

Physical Chemistry Chemical Physics

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Wu, W. Wei, X. Liu, K. Liu and S. Li, *Phys. Chem. Chem. Phys.*, 2019, DOI: 10.1039/C9CP03981C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Published on 06 August 2019. Downloaded by Huazhong University of Science & Technology on 8/19/2019 12:47:18 PM

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Structure and Dynamic Properties of Stretched Water in Graphene Nanochannels by Molecular Dynamics Simulation: Effects of Stretching Extent

Mingbing Wu^a, Wei Wei^a, Xiaowei Liu^a, Kang Liu^{*b}, Song Li^{*a}

Abstract

Water confined in nanochannels can be stretched with the variation of the external pressure, leading to unusual properties compared with bulk water. In order to unravel the impacts of stretching extent on the structural and dynamical properties of water confined in hydrophobic graphene nanochannels with various channel widths (L = 1 nm, 2 nm and 3 nm), molecular dynamics (MD) simulations were performed in this work. It was found that the ultrahigh negative pressure was presented in the confined space with the increase of stretching extent before cavitation. The interfacial density peak and tetrahedral arrangement were reduced with the increasing hydrogen bond length, indicating the more disordered

structure organization, especially in channels with small channel widths. On the other hand, the hydrogen bond lifetime was increased due to the prolonged stability of hydrogen bond under stretching. The remarkably increased diffusion coefficients of confined water with the increasing stretching coefficient, resulting from the faster diffusion of interfacial water along channel surface regardless of channel widths. At last, the oscillating tangential pressure profile inside nanochannels demonstrated that the confined water under stretching consists of the multiple layers exhibiting alternate positive and negative pressures, which is reduced with the increase of stretching coefficient, corresponding to the enhanced diffusion.

1. Introduction

Nanoconfined water, which plays a significant role in various fields including biology¹, physics and chemistry², and material science³, has been attracting growing attention of both theorists and experimentalists in recent years. Both structure and dynamical properties of water in nanoconfinement are remarkably different from bulk water.^{4, 5} The more ordered microstructure⁶ and the accelerated transportation of water molecules under nanoconfinement^{7, 8} have been frequently reported by molecular dynamics (MD) simulations. The increased phase transition temperature of the nanoconfined water in comparison with bulk water^{9, 10} have also been reported. In addition, the viscosity and the associated shear forces of confined water are increased by several orders of magnitude in contrast to bulk water¹¹. The accelerated

transportation of nanofluidics^{12, 13} consisting of water confined in nanochannels has won increasing research interest for decades.^{13, 14} Radha *et al.*¹⁵ fabricated atomically flat 2Dcapillares experimentally and observed a significant enhancement in water flow (up to 1 meter per second) due to the high capillary pressures (approximately 1000 bar) and large slip lengths. Molecular simulation¹⁶ has revealed that the flux of water within hydrophobic graphene is three to four orders of magnitude higher than that confined within hydrophilic hBN (hexagonal boron nitride) and MoS₂ of identical pore width, suggesting that the dynamical properties of nanoconfined water depend strongly on the channel surface properties.

Regardless of the enormous number of studies on confined water, the impacts of stretching or negative pressure have not been taken into account. It is known that the cohesion of the liquid water can sustain an externally mechanical stretching, resulting in an internal ultrahigh negative pressure¹⁷, i.e., the water molecules are subjected to large hydrostatic tension. This is a common state for water in nature. For example, in the process of transpiration of plants^{18, 19}, the sap inside xylem is under stretching (i.e. the absolute pressure of stretched water is negative) until cavitation breaks the continuity of water and hence water is supplied to transpiring leaves. The water liquid

^{a.} State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. Email: songli@hust.edu.cn.

^{b.} MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, P. R. China. E-mail: kang.liu@whu.edu.cn

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

2

Accepted

Jhemica

mistr

VSICal

Journal Name

under tension in metastable state can be utilized to drive the water fluid in microchannels, which is the key for heat and mass transfer in microfluidics.²⁰ The maximum pressure of stretched bulk water is predicted to be approximately -200 MPa by MD simulations.²¹ However, the pressure profiles of stretched water in nanoconfinement has not been explored, which is critical for assessing the transportation performance of water in nanochannels.

It should be also noted that evaporation plays an equivalent role to stretching in creating negative pressures of water in confinement, which was frequently employed for heat dissipation. Nazari et al.22 have achieved unprecedented evaporative heat fluxes in nanochannels by utilizing the negative liquid pressure for thermal management of photonics and electronics devices. Excessive stretching or evaporation will result in cavitation, in which the negative pressure exceeds the critical points that confined water can sustain. Duan et al.23 have directly observed evaporation-induced cavitation and accelerated water transport in nanofluidic channels driven by the negative pressure of up to -7 MPa. Overall, nanoconfined water in negative pressure is common under stretching or evaporation in many processes. However, little effort has been made to investigate the impacts of channel width on the negative pressures presented by confined water. From another perspective, exploring the microstructure and dynamical properties of the stretched water molecules in nanochannels can facilitate our understanding towards the physiochemical properties of confined water from the view of negative pressure. Therefore, this work investigated the pressure profile, structure and dynamical properties of stretched water confined in graphene nanochannels by MD simulations.

2. Methodology

In this work, we considered N water molecules enclosed between two parallel graphene sheets. TIP4P²⁴ water model with four interaction sites, including an additional massless M site located coplanar with the oxygen (O) and hydrogen (H) sites on the bisector of the H-O-H bond angle, were used for molecular simulations. Meanwhile, the carbon atoms of graphene sheets were modelled as neutral particles interacting with the oxygen atoms through the LJ parameters of $\sigma = 3.4$ Å and $\varepsilon = 0.23227$ kJ/mol taken from the Universal Force Field (UFF)²⁵, whose accuracy has been validated in our previous study²⁶. The LJ parameters of different atom pairs were calculated using the Lorentz-Berthelot combining rule (i.e. $\sigma_{ij} = 1/2(\sigma_i + \sigma_j)$ and $\varepsilon_{ij} = \sqrt{\varepsilon_i \times \varepsilon_j}$). The graphene channels with a width of L ranging from 1 to 3 nm were shown in Fig. 1. The dimensions of graphene sheet containing 384 carbon atoms were 2.95 nm × 3.40 nm. The z dimension perpendicular to the graphene sheet varies for each system, namely L = 1 nm, 2 nm and 3 nm.

The initial number of water molecules N in various nanochannels was determined by grand canonical Monte Carlo (GCMC) simulations in RASPA²⁷, from which 224, 550 and 885 water molecules in graphene nanochannels of L = 1, 2 and 3 nm, respectively, were obtained. In order to generate different stretching extents of water in nanochannels, a number of water molecules was removed randomly from the channels, and then the system was equilibrated under NVT ensemble by MD simulations for 2 ns, followed by 5 ns production run. Thus, in total 18 independent MD simulations for each nanochannel were carried out to compute the pressures at varying stretching extents. In order to quantify the stretching extent, stretching coefficient (ε_N) defined as the ratio of eventual number of water molecules to the initial number of water molecules in the channel in Eq.1 were adopted.

$$\varepsilon_N = \frac{\Delta N}{N} \tag{1}$$

where *N* represents the initial number of water molecules in graphene channels, ΔN means the number of water molecules that was removed from the initial system. Therefore, each system containing a specific number of water molecules corresponds to a stretching coefficient or stretching extent. Some representative systems along with its corresponding number of water molecules of all graphene channels were shown in Table S1.

All MD simulations were performed in the NVT ensemble using Gromacs package²⁸. The constant target temperature of 300 K was applied and maintained by the Nose-Hoover with a time constant of 0.5 ps. The electrostatic interactions were computed directly by Coulomb law up to 1.28 nm between the interaction sites, beyond which PME²⁹ method was

Journal Name

implemented. The time step of 1.0 fs was used to integrate the equation of motion. For each system, a total of 7 ns including 2 ns for equilibration and 5 ns for analysis was applied for MD simulations. Periodic boundary conditions (PBC) were applied to all directions.

The corresponding pressure ${\bf P}$ at each stretching extent is computed 30 as:

$$\mathbf{P} = \mathbf{P}_{kin} + \mathbf{P}_{conf}$$

$$= -\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$

$$= \begin{bmatrix} P_T & 0 & 0 \\ 0 & P_T & 0 \\ 0 & 0 & P_N \end{bmatrix}$$
(2)

where **P** is a second-order tensor for an inhomogeneous fluid ,which includes a kinetic contribution (**P**_{kin}) from convective momentum transport of molecules and a configurational contribution (**P**_{conf}) due to interactions among molecules. The axial symmetry in the z dimension (normal to the pore walls) and translational symmetry in the xy-plane indicate that all off diagonal components are zero, and there are only two independent, non-zero components: the tangential pressure (parallel to the wall) $P_{xx} = P_{yy} = P_T = (P_{xx} + P_{yy})/2$ ($P_{xx} = -\sigma_{xx}, P_{yy} = -\sigma_{yy}$), and the pressure normal to the wall $P_{zz} = P_N$ ($P_{zz} = -\sigma_{zz}$). The virial stress is calculated³¹ as

$$\boldsymbol{\sigma} = \frac{2}{V} (\boldsymbol{\Xi} - \boldsymbol{E}_{kin}) \tag{3}$$

where V is the volume of the computational box. The kinetic energy and virial of the N-particle system can be calculated, respectively:

$$\boldsymbol{E_{kin}} = \frac{1}{2} \sum_{i}^{N} m_i \mathbf{v}_i \otimes \mathbf{v}_i \tag{4}$$

$$\Xi = -\frac{1}{2} \sum_{\substack{i,j \ i\neq j}} (\mathbf{r}_i - \mathbf{r}_j) \otimes \mathbf{F}_{ij}$$
⁽⁵⁾

where m_i is the atomic mass associated with O and H sites only, r_i is the position vector and v_i is the velocity vector. F_{ij} is the force vector between two interaction sites (O, H or M). Note that the ultimate pressure is computed as the ensemble average of each system.

Intermittent autocorrelation function (ACF) was calculated, C(t) ³² according to Eq. 6.

$$C(t) = \frac{\langle h(0)h(t) \rangle}{\langle h \rangle} \tag{6}$$

where h(t) = 1 indicates that a specific water pair is hydrogen bonded at time t and 0 otherwise (It may become 1 again later if the two water molecules reform hydrogen bond). C(t) does not depend on continuous presence of the hydrogen bond. The relaxation time $\tau_{\rm rlx}$ of $C(\tau_{\rm rlx}) = e^{-1}$ was calculated to measure the structural relaxation of hydrogen bond.³³ ARTICLE

Self-diffusion coefficient (D) is calculated by the mean square displacement (MSD) through the Einstein Prelation as for the the transmission of transmission of the transmission of the transmission of transmis

$$D = \lim_{t \to \infty} \frac{1}{4Nt} \langle \sum_{i=1}^{N} [r_i(t) - r_i(0)]^2 \rangle$$
(7)

where $r_i(0)$ and $r_i(t)$ are the positions of the center of mass of the molecules at time 0 and t, respectively. D is the self-diffusion coefficient, N is the total number of molecules, and < > means an ensemble average. Here, each ultimate value D is determined by averaging five independent simulations of 1 ns.

3. Results and Discussion

Fig. 2 (a)Tangential pressure (P_T) and (b) the pressure normal to the wall (P_N) of confined water inside various graphene channels of L = 1, 2 and 3 nm as a function of stretching coefficient

The tangential pressure (P_T) and normal pressure (P_N) profiles of water confined in graphene channels of different widths with the increase of stretching coefficient were shown in Fig. 2a and 2b, respectively. Both tangential pressure (P_T) and normal pressure (P_N) were negative, indicating the high hydrostatic tension of liquid water under stretching, which also increased with the increase of stretching coefficient. The initial increase in pressure can be ascribed to the large tension required to sustain external strain until the critical cavitation pressure (i.e. the maximum negative pressure), suggesting the increasing hydrostatic tension of water is associated with the onset of

ARTICLE

Page 4 of 9

Fig. 3. The density distribution profiles of confined water under different stretching coefficients along the direction perpendicular to the graphene surface at 300 K for (a) L = 1 nm, (b) L = 2 nm and (c) L = 3 nm. Black and blue lines represent the density distribution profiles of confined water at $\varepsilon_N = 0$ and $\varepsilon_N = \varepsilon_{Nmax}$, respectively. Red line represents the intermediate ε_N .

cavitation in water²¹. Further stretching causes the occurrence of cavitation, leading to significant reduction in pressure. The corresponding ε_{Nmax} for L = 1, 2 and 3 nm was 0.20, 0.18 and 0.15, respectively, indicating that the water in the smaller nanochannel can sustain the higher stretching extent. Additionally, the maximum negative tangential pressure (P_T) of water in narrow channels (L = 1 nm) is higher (-2000 bar) than those in wide channels, implicating the faster transport of water in smaller channels. Cavitation occurs at ε_{Nmax} and cavities grow with the stretching coefficient, consistent with previous observations in bulk water by MD simulation.^{21, 34}

In this work, we mainly focused on the microstructure and dynamic properties of confined water at varying stretching

coefficients prior to cavitation ($\varepsilon_N = \varepsilon_{Nmax}$). We firstly analysed the density distribution profiles of water along the direction perpendicular to the graphene surface computed according to the center of mass of water molecules as shown in Fig. 3. The density distribution profiles of water confined in graphene nanochannels with varying widths (L = 1, 2, 3 nm) and stretching coefficients (i.e. $\varepsilon_N = 0$, $\varepsilon_N = \varepsilon_{Nmax}$ and $0 < \varepsilon_N < \varepsilon_{Nmax}$) were compared. Apparently, all density profiles oscillate from graphene interface to intermediate region, which is a common phenomenon observed at solid-liquid interface³⁵⁻³⁷. In particular, there is an interspace of ~0.25 nm between graphene and water, beyond which the first peak extending up to 0.5 nm shows up. Comparing profiles in Fig. 3a-c, the locations of the interspace and the first peak are independent

Fig. 4. The tetrahedral order parameter (q) and orientation distribution probability profiles of stretched water confined within various graphene channels at 300 K, respectively. The left, middle and right panels represent cases of L =1 nm (a and d), L = 2 nm (b and d) and L = 3 nm (c and f), respectively. Black solid lines represent the results of bulk water.

Published on 06 August 2019. Downloaded by Huazhong University of Science & Technology on 8/19/2019 12:47:18 PM

Journal Name

of the nanochannel width, similar to many reports^{35, 38-40}. Only two oscillating density peaks were observed for L = 1 nm (Fig. 3a), implicating the two-layer structures of confined water molecules^{35, 41}. For L = 2 nm and L = 3 nm, a bulk-like region at the central channel was formed (Fig. 3b and 3c), indicating that the effect of the surface perturbation is highly localized and amplified under extreme confinement (i.e. L = 1 nm). During the process of stretching, the density peaks are reduced with the increase of stretching coefficient, and the density peak locations slightly shifted towards the central region regardless of channel widths owing to the varying orientation of water molecules in this region, which will be discussed in detail later.

To further investigate the effects of stretching coefficients on structural properties of confined water, we calculated the tetrahedral order parameter $(q)^{42}$ that is frequently used to evaluate the structure order of water and orientation distribution probability profiles (Fig. 4). Tetrahedral order parameter q is a parameter describing the order of tetrahedral structure of water described as:

$$q = 1 - \frac{3}{8} \sum_{j=1}^{3} \sum_{k=j+1}^{4} \left(\cos \psi_{jk} + \frac{1}{3} \right)^2$$
(8)

where ψ_{jk} represents the angle formed by one oxygen atom of one molecule and the other two oxygen atoms of the adjacent

molecules. q varies from 0 to 1. q = 1 represents the perfectly tetrahedral network and q < 1 represents the configuration deviating from the ideal tetrahedral structures^{42, 43}. Fig. 4a-c demonstrate that confined water exhibits the lower probability of tetrahedral structure compared to bulk water⁴³, which may be resulted from the aggregation of water molecules at graphene surface. With the increase of channel width, the tetrahedral order parameter probability profiles tend to approximate to that of bulk water due to the enlarged bulk-like region of central channels. With the increase of stretching coefficient, the profile of confined water shifted towards the lower q, indicating the higher ε_N is, the more disordered the confined water is. This could be attributed to the growing intermolecular void space during stretching, characterized by void fraction⁴⁴ (V_f) shown in Table 1, which may inevitably destroy the formation of tetrahedral structure of water molecules, leading to a shift toward low q. The void fraction is the ratio of the volume of intermolecular space that is accessible to the virtual probe sphere of 0.28 nm in radius and the volume of channels, which was calculated by the Construct surface mesh modifier of OVITO⁴⁵. The radius of the probe sphere is determined according to the location of the first peak in the O-O radial distribution function of water⁴⁴.

Table 1. The varying void fractions of stretched water inside graphene channels with different channel width

L = 1 nm		L = 2 nm		L = 3 nm	
ε_N	V _f (%)	ε_N	V _f (%)	ε_N	V _f (%)
0	0.32	0	1.07	0	2.93
0.07	2.24	0.06	6.76	0.05	6.26
0.13	6.29	0.13	13.69	0.1	10.87
0.2	12.75	0.18	20.48	0.15	18.24

Fig. 5. The hydrogen bond length distribution probability and the autocorrelation function along with its lifetime, of stretched water confined within various graphene channels at 300 K, respectively. The left, middle and right panels represent cases of (a and d) L = 1 nm, (b and d) L = 2 nm and (c and f) L = 3 nm, respectively. Black solid lines represent the results of bulk water.

ARTICLE

Published on 06 August 2019. Downloaded by Huazhong University of Science & Technology on 8/19/2019 12:47:18 PM

confined water, similar to the findings of Kumar_{ie} $c_{\rm Ar} d_{\rm te}^{5}$ and Hummer *et al.*⁴⁸. The hydrogen bond life time of both Water reported in this work agrees well with previous study³². Such a phenomenon may be attributed to stronger hydrogen bonding between confined water molecules⁵. With the increase of stretching coefficient, the hydrogen bond lifetime of confined water is shorter as shown in the inset of Fig.5d in channel L = 1 nm . This could be owing to the increased bulk-like region in large nanochannels. However, the hydrogen bond lifetime of confined water is slightly longer with the increase of channel width. Besides, the longer life of hydrogen bond in channel L = 1 nm than L = 2 and 3 nm may be attributed to the narrow confinement that facilitates hydrogen bonding. Overall, the

higher stretching coefficient results in the longer hydrogen

bond lifetime with a reduced ACF decay rate.

Fig. 6. The self-diffusion coefficient (D) of confined water in graphene nanochannels at 300 K. (a) The self-diffusion coefficient of all confined water under stretching within L=1, 2 and 3 nm. The black dash line represents the self-diffusion coefficient of bulk water (3.6×10^{-5} cm²/s) computed through a system of 885 water molecules under identical ambient conditions. (b) Comparison of self-diffusion coefficient (D) of confined water of the interfacial region (the first peak in density distribution profile of Fig. 2b and 2c) and the bulk-like region at $\varepsilon_N = 0$. There is no bulk-like region for the case of L = 1 nm.

We also studied the impact of stretching coefficient on the hydrogen bond length and intermittent lifetime to further understand the dynamic properties of confined water. Two water molecules are considered to be hydrogen-bonded only if the hydrogen bond length is limited to shorter than or equal to 3.5 Å, and the angle formed by the vector of the two oxygen atoms of water and one O-H vector is lower than 30°.47 The hydrogen bond length distribution probability of the hydrogen bond length and the ACF of hydrogen bonds of stretched water within various graphene channels were displayed in Fig. 5. Fig. 5a-c show that the hydrogen bond length slightly becomes longer with the increase of stretching coefficient, due to the increased distance between water molecules. With the increase of the width of graphene channel, the impacts of stretching coefficient on hydrogen bond length distribution probability is less significant. In addition, Fig. 5d-f show that the ACFs of confined water within graphene channel decay slower than bulk water, implying the extended lifetime of hydrogen bond for

Additionally, the orientation distribution probability profiles of

confined water within interfacial region (~0.5 nm) defined as

the insets of Fig. 4d. The dipoles of water molecules prefer to

be perpendicular to the graphene surface, whereas the water

plane defined as the vector of the two H atoms and the normal

direction of graphene surface prefers to be parallel to the

graphene surface shown in Fig. S1, which may facilitate the

formation of hydrogen bonds of water, similar to previous

studies^{40, 46}. The increased channel widths will reduce the

orientation tendency. Under the process of stretching,

however, the planes of water exhibit less and less preferential

to be parallel to graphene surface, because some water

molecules slightly tilt toward central region, in agreement with

the peak of water density profiles of Fig. 3.

In order to reveal the effects of stretching coefficient on the diffusion of confined water, the self-diffusion coefficients of confined water within various channels were shown in Fig. 6a. Compared with bulk water, the diffusion coefficient of confined water is increased, which may be relevant to the decreased magnitudes of the dipoles of the water molecules in the interfacial regions as reported in previous study³⁵. Marti et al.⁴⁹ also demonstrated that confined water exhibited the higherdiffusivity than bulk by MD simulations. Besides, with the increasing stretching coefficient, the diffusion was greatly enhanced by approximately five times especially for L=1 and 2 nm. Netz et al.⁵⁰ reported that decreasing the density of bulk water (similar to stretching) resulted in an increased selfdiffusion coefficient due to the enhanced tetrahedral ordering. Recent study of Jalalitalab et al.51, reported that with the decrease of densities of water confined in a channel of L = 0.8 nm, a significant increase in self-diffusion coefficient was

Journal Name

Journal Name

observed from MD simulations. Jiao *et al.*⁵² have investigated the diffusion of water confined in a graphene channel of L = 0.65 nm, in which the collective diffusion coefficients of water increased from 1.49×10^{-5} cm²/s to 30.87×10^{-5} cm²/s when the number of water molecules decreased from 986 to 58. Such a tendency is driven by thermal fluctuation. Ma *et al.*⁵³ observed an exceedingly faster diffusion than bulk water by simulating a

mainly resulted from the faster diffusion of the water in the interfacial regions, especially diffusion in Randy diffections? (Fig. S2), which becomes insignificant with the increase of channel width (Fig. 6b). Therefore, water in L = 1 nm exhibits the highest diffusion coefficient since it has no bulk region. Similar findings have been reported by Kumar *et al.*⁵⁷ and Rana *et al.*⁵⁸.

Fig. 7. The total and dimensional pressure tensor profiles of water confined within various channel widths at varying stretching coefficients at 300 K. Fig. 7a-c represent pressure tensor of three directions for L = (a) 1 nm, (b) L = 2 nm and (c) L = 3 nm. The righty axis describes the density profile along z direction represented by blue solid lines. Fig. 7e-f represent the tangential (P_T) pressure tensor profiles under stretching at 300 K for (d) L = 1 nm, (e) L = 2 nm and (f) L = 3 nm.

water nanodroplet on graphene sheet, and the self-diffusion coefficient showed a remarkable increase with the reduced number of water molecules within the nanodroplet. Actually, either tuning the density or the number of water molecule in confinement is equivalent to stretching water in confinement, leading to the strong cohesive forces between confined water molecules (i.e. the high negative pressure) that may facilitate the diffusion of water molecules. However, a decrease in selfdiffusion coefficient of confined water compared with bulk water have also been reported^{38, 41, 54}, which may be ascribed to the absence of stretching effects (by stretching and decreasing the density or number of water molecules in simulation box) on diffusion. Thus, the higher density or the more compacting water molecules than bulk leads to the reduced diffusion coefficients. However, so far, it is still inconclusive to the mechanism of the enhanced self-diffusion coefficient of stretched water within graphene nanochannel, which may depend on multiple factors including the channel properties, temperature and pressure^{55, 56}. Further comparison of the selfdiffusion coefficient of water in the interfacial and bulk-like regions, respectively revealed that the enhancement in D is

The anomalous high pressure of confined water has been reported by Gubbins group^{59, 60}. In order to elucidate the impacts of stretching extent on internal pressure, we calculated the pressure tensors shown in Fig. 7 by Gromacs-LS^{61, 62}, including the tangential pressure along x or y directions $(P_{xx} = P_{yy} \text{ and } P_T = (P_{xx} + P_{yy})/2$, thus $P_{xx} = P_{yy} = P_T$) and normal pressure along z direction ($P_{zz} = P_N$). It was found that P_{xx} , P_{yy} and $P_{\rm T}$ generally correlate with the density distribution profile inside graphene channels, suggesting that the confined water is composed of alternating layers exhibiting ultra-high positive and negative pressures regardless of the channel widths. In contrast, P_{zz} is nearly constant, similar to the studies of Vanegas et al.⁶² and Long et al.³⁰. With the increase of channel width, the oscillating region is localized in graphene-water interface. Moreover, the increased stretching coefficient weakens the oscillation and reduces the pressure values (Fig. 7d-f), facilitating the increased diffusion of water under stretching since either decreased positive pressure or negative pressure can result in the faster diffusion.

View Article Online

ARTICLE

4. Conclusions

In this work, MD simulations have been performed to explore various structural and dynamical properties of the stretched water confined inside graphene channels with different widths (i.e. L = 1 nm, 2 nm and 3 nm) at 300 K. It was found with the stretching coefficient increases, the density peak intensity decreased regardless of the channel width, and the location of the density peak slightly shifted towards the central region. Besides, the interfacial water molecules prefer to lie parallel to the graphene surface, facilitating the hydrogen bond of confined water. Moreover, confined water within graphene channel exhibits less tetrahedral ordering than bulk water with the increased stretching coefficient, which may be attributed to the aggregation of water near graphene surfaces, leading to the breaking of tetrahedral structure. Similarly, the long hydrogen bond length and the short lifetime of hydrogen bond for confined water compared with water was observed, which was decreased with the increase of stretching coefficient. The impacts of length and lifetime of hydrogen bond of confined water will be weakened by the increasing channel width. On the other hand, the significantly increased self-diffusion coefficient of stretched water was demonstrated, especially inside small channels, which is mainly resulted from the faster diffusion of water of interfacial regions. Both enhanced and reduced diffusion of confined water have been reported in previous studies by MD simulations, which can be possibly explained by the presence or absence of stretching effects through tuning the water density or number of water molecules within confined space. The pressure distribution profiles of stretched water pressure demonstrated that confined water is consisted of multiple layers exhibiting ultra-high alternate positive and negative pressures (i.e. P_{xx} and P_{yy}) along graphene surfaces, and with the increased stretching coefficient, the oscillated $P_{\rm xx}$ and P_{yy} was reduced, corresponding the enhanced diffusion along channel surface. This work systematically investigated the effects of stretching extent on the structure and dynamic properties of the confined water under varying channel widths, demonstrating the more disordered structure and increased diffusion of water under stretching, which may provide insights into understanding the molecular behavior of confined water under stretching.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Project No. 51606081, 51606082 and double first-class research funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001). This work was carried out at National Supercomputer Center in Shenzhen.

References

- DOI: 10.1039/C9CP03981C
 D. Lucent, V. Vishal and V. S. Pande, Proceedings of the National Academy of Sciences, 2007, 104, 10430.
- B. J. Berne, J. D. Weeks and R. Zhou, Annual Review of Physical Chemistry, 2009, 60, 85-103.
- G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou and W. Guo, *Nature Nanotechnology*, 2017, 12, 317.
- 4. M. Foroutan, S. M. Fatemi and F. Esmaeilian, *The European Physical Journal E*, 2017, 40, 19.
- 5. H. Kumar, C. Dasgupta and P. K. Maiti, *RSC Advances*, 2015, 5, 1893-1901.
- E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis and V. Molinero, *Physical Chemistry Chemical Physics*, 2010, 12, 4124-4134.
- 7. R. H. Tunuguntla, R. Y. Henley, Y.-C. Yao, T. A. Pham, M. Wanunu and A. Noy, *Science*, 2017, 357, 792.
- R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva and A. K. Geim, Science, 2012, 335, 442.
- 9. G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim and I. V. Grigorieva, *Nature*, 2015, 519, 443.
- K. Koga, G. T. Gao, H. Tanaka and X. C. Zeng, *Physica A: Statistical Mechanics and its Applications*, 2002, 314, 462-469.
- 11. D. Ortiz-Young, H.-C. Chiu, S. Kim, K. Voïtchovsky and E. Riedo, Nature Communications, 2013, 4, 2482.
- 12. J. C. T. Eijkel and A. v. d. Berg, *Microfluidics and Nanofluidics*, 2005, 1, 249-267.
- 13. J. Gao, Y. Feng, W. Guo and L. Jiang, *Chemical Society Reviews*, 2017, 46, 5400-5424.
- 14. H. G. Park and Y. Jung, Chemical Society Reviews, 2014, 43, 565-576.
- B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu and A. K. Geim, *Nature*, 2016, 538, 222.
- X. Song, L. Lu, M. Wei, Z. Dai and S. Wang, *Molecular Simulation*, 2018, DOI: 10.1080/08927022.2018.1510179, 1-10.
- 17. F. Caupin and A. D. Stroock, *Liquid Polymorphism, Book Series:* Advances in Chemical Physics, 2013, 152, 51-80.
- 18. H. Cochard, Comptes Rendus Physique, 2006, 7, 1018-1026.
- 19. P. F. Scholander, E. D. Bradstreet, E. A. Hemmingsen and H. T. Hammel, *Science*, 1965, 148, 339.
- 20. T. D. Wheeler and A. D. Stroock, Nature, 2008, 455, 208.
- 21. P. Wang, W. Gao, J. Wilkerson, K. M. Liechti and R. Huang, *Extreme Mechanics Letters*, 2017, 11, 59-67.
- M. Nazari, A. Masoudi, P. Jafari, P. Irajizad, V. Kashyap and H. Ghasemi, *Langmuir*, 2019, 35, 78-85.
- C. Duan, R. Karnik, M.-C. Lu and A. Majumdar, Proceedings of the National Academy of Sciences, 2012, 109, 3688-3693.
- W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, *The Journal of Chemical Physics*, 1983, 79, 926-935.
- A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, Journal of the American Chemical Society, 1992, 114, 10024-10035.
- 26. K. Liu, P. Yang, S. Li, J. Li, T. Ding, G. Xue, Q. Chen, G. Feng and J. Zhou, *Angew Chem Int Ed Engl*, 2016, 55, 8003-8007.
- 27. D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, *Molecular Simulation*, 2016, 42, 81-101.
- 28. B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, *Journal of Chemical Theory and Computation*, 2008, 4, 435-447.

- Journal Name
- 29. T. Darden, D. York and L. Pedersen, *The Journal of Chemical Physics*, 1993, 98, 10089-10092.
- Y. Long, J. C. Palmer, B. Coasne, M. Śliwinska-Bartkowiak, G. Jackson, E. A. Müller and K. E. Gubbins, *The Journal of chemical physics*, 2013, 139, 144701.
- N. C. Admal and E. B. Tadmor, *Journal of Elasticity*, 2010, 100, 63-143.
- 32. H. Xu, H. A. Stern and B. J. Berne, *The Journal of Physical Chemistry B*, 2002, 106, 2054-2060.
- 33. S.-P. Ju, C.-I. Chang, M.-H. Weng and N.-K. Hsieh, *The Journal of Physical Chemistry C*, 2009, 113, 7484-7491.
- W. Gao, K. M. Liechti and R. Huang, *Extreme Mechanics Letters*, 2015, 3, 130-140.
- G. Cicero, J. C. Grossman, E. Schwegler, F. Gygi and G. Galli, Journal of the American Chemical Society, 2008, 130, 1871-1878.
- L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel and N. C. Sturchio, *Physical Review Letters*, 2001, 87, 156103.
- S. H. Lee and P. J. Rossky, *The Journal of Chemical Physics*, 1994, 100, 3334-3345.
- H. Mosaddeghi, S. Alavi, M. H. Kowsari and B. Najafi, *The Journal of Chemical Physics*, 2012, 137, 184703.
- J. Martí, J. Sala, E. Guàrdia and M. C. Gordillo, *Physical Review E*, 2009, 79, 031606.
- 40. M. C. Gordillo and J. Martí, Physical Review B, 2008, 78, 075432.
- 41. P. Hirunsit and P. B. Balbuena, *The Journal of Physical Chemistry C*, 2007, 111, 1709-1715.
- 42. J. R. Errington and P. G. Debenedetti, Nature, 2001, 409, 318.
- 43. Y. I. Jhon, K. T. No and M. S. Jhon, *Fluid Phase Equilibria*, 2006, 244, 160-166.
- 44. A. Stukowski, Jom, 2014, 66, 399-407.
- 45. A. Stukowski, Modelling and Simulation in Materials Science and Engineering, 2009, 18, 015012.
- 46. M.-Y. Zhao, X.-P. Yang and X.-N. Yang, Acta Physico-Chimica Sinica, 2015, 31, 1489-1498.
- A. Luzar and D. Chandler, *The Journal of Chemical Physics*, 1993, 98, 8160-8173.
- 48. G. Hummer, J. C. Rasaiah and J. P. Noworyta, *Nature*, 2001, 414, 188.
- 49. J. Martí, J. Sala and E. Guàrdia, *Journal of Molecular Liquids*, 2010, 153, 72-78.
- 50. P. A. Netz, F. W. Starr, H. E. Stanley and M. C. Barbosa, *The Journal of chemical physics*, 2001, 115, 344-348.
- 51. E. Jalalitalab, M. Abbaspour and H. Akbarzadeh, *New Journal of Chemistry*, 2018, 42, 16258-16272.
- 52. S. Jiao and Z. Xu, ACS Nano, 2017, 11, 11152-11161.
- 53. M. Ma, G. Tocci, A. Michaelides and G. Aeppli, *Nature Materials*, 2015, 15, 66.
- 54. Y. Liu, Q. Wang, T. Wu and L. Zhang, *The Journal of Chemical Physics*, 2005, 123, 234701.
- I. N. Tsimpanogiannis, O. A. Moultos, L. F. M. Franco, M. B. d. M. Spera, M. Erdős and I. G. Economou, *Molecular Simulation*, 2018, DOI: 10.1080/08927022.2018.1511903, 1-29.
- M. Moulod and G. Hwang, *Journal of Applied Physics*, 2016, 120, 194302.
- 57. P. Kumar, S. V. Buldyrev, F. W. Starr, N. Giovambattista and H. E. Stanley, *Physical Review E*, 2005, 72, 051503.
- 58. M. K. Rana and A. Chandra, *The Journal of Chemical Physics*, 2013, 138, 204702.
- Y. Long, M. Śliwińska-Bartkowiak, H. Drozdowski, M. Kempiński, K. A. Phillips, J. C. Palmer and K. E. Gubbins, *Colloids and Surfaces* A: Physicochemical and Engineering Aspects, 2013, 437, 33-41.

- M. Śliwińska-Bartkowiak, H. Drozdowski, M. Kempiński Me Jażdżewska, Y. Long, J. C. Palmer and KolE10Gobbiosc Physical Chemistry Chemical Physics, 2012, 14, 7145.
- 61. A. Torres-Sánchez, J. M. Vanegas and M. Arroyo, *Journal of the Mechanics and Physics of Solids*, 2016, 93, 224-239.
- 62. J. M. Vanegas, A. Torres-Sánchez and M. Arroyo, *Journal of chemical theory and computation*, 2014, 10, 691-702.

This journal is © The Royal Society of Chemistry 20xx