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A B S T R A C T   

Osmotic heat engines have attracted increasing attention in harvesting ultra-low temperature waste heat. In 
order to fill the gap in the high-throughput computational screening of adsorbent-aqueous salt solution working 
pairs for adsorption-driven osmotic heat engines, an experimental water adsorption isotherm database is con-
structed and eight common salt-water solutions are selected to identify the high-performance work pairs with 
system energy efficiency as evaluation indicator. The relationship between adsorbent properties, adsorbent 
structure characteristics and system performance is systematically analyzed. Results revealed that high working 
capacity and moderate adsorption enthalpy of adsorbents and large osmotic coefficients of salts are beneficial to 
energy efficiency. Adsorbents with larger accessible surface area, moderate available pore volume and critical 
pore diameter are favorable. Furthermore, regression machine learning is employed for achieving fast and ac-
curate prediction of the system energy efficiency to accelerate screening. Genetic algorithm is adopted to search 
for the best-performing working pair properties.   

1. Introduction 

Low-temperature waste heat widely exists in the industrial processes 
(Kumar and Rakshit, 2021; Farhat et al., 2022). It is estimated that 72% 
of primary energy is eventually discharged into environment as waste 
heat due to the inefficient thermodynamic process (Forman et al., 2016). 
The recovery and utilization of waste heat contributes to energy saving, 
reducing energy consumption and alleviating environmental issues. 
Traditional thermodynamic systems such as organic Rankine cycle and 
Kalina cycle have been wildly developed to recover low-grade heat 
(Long et al., 2019; Arslan and Yılmaz, 2022; Köse et al., 2022). However, 
their performance is not satisfactory when operating at ultra-low tem-
perature below 80 ℃. Recently, osmotic heat engines (OHEs) were 
proposed to provide technical solutions for exploiting such waste heat. 

Osmotic heat engines aiming at converting low-grade heat into 
electricity usually consist of two main units, one is the regeneration unit 
devoted to thermally separating the salt solution into high and low 
concentration solutions, as well as restoring the initial concentration of 
the working solution, the other is the power generation unit for 

capturing the salinity gradient produced in the regeneration unit and 
converting the Gibbs free energy of mixing into electricity (Lin et al., 
2014). Common technologies employed in regeneration unit include 
membrane distillation (MD) (Zaragoza et al., 2014), multiple effect 
distillation (MED) (Hu et al., 2019) and adsorption-based desalination 
(AD) (Wu et al., 2010; Li et al., 2021). In the power generation unit, the 
most promising technologies recognized are pressure retarded osmosis 
(PRO) (Tedesco et al., 2015; Long et al., 2018a) and reverse electrodi-
alysis (RED) (Long et al., 2018a, 2018b; Lacey, 1980). 

Efforts have been devoted to emphasizing configuration design and 
operation condition optimization of osmotic heat engine. Ortega- 
Delgado et al (Ortega-Delgado et al., 2019). conducted a comprehen-
sive exergy analysis of a RED-MED heat engine and the effects of the 
main operation and design variables on the exergy efficiency were 
assessed, the result shows that a maximum exergy efficiency of 24% can 
be obtained when operating under working concentration of 4.5–0.01 
mol/L and solutions velocity of 0.2–0.36 cm/s with high-performing 
membranes. Long et al (Long et al., 2017). proposed an osmotic heat 
engine combined MD and RED, and an electrical efficiency of 1.15% is 
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achieved when operating between 60 ℃ and 20 ℃ with 5 mol/kg NaCl 
as working solution. Hu et al (Hu et al., 2018). performed a thermody-
namic analysis of a MED-RED hybrid system to investigate the effect of 
operation and structure parameters on system performance, the result 
indicated that an energy conversion efficiency of 0.85% can be obtained 
with heat source temperature of 95 ℃ and working concentration of 
3.75 mol/kg. Zhao et al (Zhao et al., 2020a). proposed an AD-PRO for 
power and cooling cogeneration, the electricity generation as well as 
refrigeration performance of the system were theoretically evaluated, 
the effects of operational conditions were also analyzed. Results indi-
cated a maximum exergy efficiency of 33.9% under a waste heat tem-
perature of 50 ℃. A further study by Zhao et al (Zhao et al., 2020b). 
explored the dynamic response of an AD-RED heat engine through dy-
namic modeling the power and cooling cogeneration system, an exergy 
efficiency of 30.14% was obtained at desorption time of 900 s and 
switching time of 10 s with CAU-10 as adsorbent. The potential appli-
cations of osmotic heat engines have also been evaluated in latest 
studies. Tong et al (Tong et al., 2020). investigated the feasibility of the 
thermolytic osmotic heat engine with NH4HCO3 solution as working 
fluid to harvest industrial waste heat, and it was found that an energy 
return on investment value of approximately 55 can be obtained, which 
indicates the suitability of using industrial waste heat to generate elec-
tricity. Zhao et al (Zhao et al., 2021). presented an advanced osmotic 
heat engine combined AD and RED and carried out a practical simula-
tion of the small-scale OHE harvesting solar energy for electricity gen-
eration, a largest average electric power of 41.8 W and a highest electric 
efficiency of 1.04% were achieved. Catrini et al (Catrini et al., 2021). 
conducted a prospective analysis on integrating the osmotic heat engine 
into cogeneration plants, and the benefits of energy, economy and 
environment were obtained by proposing two different applications and 
investigating three illustrative case studies. 

In the regeneration unit, AD has become a competitive candidate due 
to its superior thermal separation capability at ultra-low temperature, 
low electricity consumption, and simple process (Olkis et al., 2019, 
2018). Adsorbent-solution working pairs play a decisive role in the 
adsorption process, hence screening suitable combinations of adsorbent 
and working solution is critical for system performance optimization. 
Various adsorbent-solution working pairs for adsorption systems (e.g. 
AD and adsorption heat pumps) were investigated (Li et al., 2020). Vasta 
et al (Vasta et al., 2012). tested a prototype of an adsorption-driven 
mobile air conditioner with zeolite-water pair and an attractive coeffi-
cient of performance (COP) of around 0.4 is returned. Pan et al (Pan 
et al., 2019). designed and manufactured an adsorption air-conditioner 
employing silica gel-water working pair to experimentally investigated 
the performance under various conditions, and a cooling power of 3.98 
kW and COP of 0.632 were reached. Metal–organic frameworks (MOFs) 
regarded as the most promising adsorbents are also extensively inves-
tigated. Given the increasing number of MOFs, high-throughput 
computational screening (HTCS) based on grand canonical Monte 
Carlo (GCMC) simulations is widely adopted to efficiently evaluate the 
performance of MOF-alcohol (methanol and ethanol) working pairs (Li 
et al., 2017; Ahmed et al., 2019). Erdos et al (Erdos et al., 2018). 
computationally screened 2930 experimentally synthesized MOFs on 
the basis of the working capacity calculated from GCMC simulations for 
adsorption heat pumps with methanol and ethanol as working fluids. 
Long et al (Long et al., 2021a). carried out a HTCS of 1322 computa-
tionally ready MOFs based on GCMC simulations for AD-PRO heat en-
gine with LiCl-methanol solution as working fluid. Different from 
alcohols, it is difficult to computationally screen MOF-water working 
pairs via GCMC simulations due to the extremely high computational 
cost of simulating water adsorption (Colón and Snurr, 2014). To address 
the challenge of screening high-performance adsorbent-water working 
pairs from a vast number of adsorbents, Liu et al (Liu et al., 2021). for the 
first time conducted the HTCS of adsorbent-water working pairs for 
adsorption-driven heat pumps instead of carrying out GCMC of water 
adsorption. They calculated system performance by constructing a 

database containing the water adsorption isotherms of over 231 adsor-
bents and establishing a mathematical model of the thermodynamic 
system. However, the high-throughput computational screening of 
adsorbent-aqueous salt solution working pairs for adsorption-based os-
motic heat engine has not been implemented so far. 

As shown in Fig. 1, in this study, we construct an experimental water 
adsorption isotherm database including 311 kinds of adsorbents and 
selected eight common salts to identify the high-performance work pairs 
which can lead to high efficiency for adsorption-reversed electrodialysis 
heat engine. The relationship between adsorbent properties, adsorbent 
structure characteristics and system performance is systematically 
analyzed. Regression machine learning for predicting system energy 
efficiency via main working pair properties collected from the database 
is conducted to accelerate the screening of adsorbent-aqueous salt so-
lution working pairs. Genetic algorithm is adopted to search for the best- 
performing working pair properties with the energy efficiency as the 
optimization objective. This study performs the high-throughput 
computational screening of adsorbent-aqueous salt solution working 
pairs for adsorption-driven heat engines and may provide guidance for 
designing high-performance novel adsorbents for adsorption-based 
OHEs. This study could also provide efficient methods to explore po-
tential adsorbents for water harvesting from air, adsorption heat pumps, 
dehumidification and desalination. 

2. Adsorption-driven osmotic heat engine 

As shown in Fig. 2, the adsorption-driven osmotic heat engine con-
sists of an adsorption-based desalination unit for thermally separating 
the salt solution into high concentration and low concentration solutions 
and a reverse electrodialysis unit for directly converting the Gibbs free 
energy of the mixture of two solutions produced in AD unit into elec-
tricity. The ideal thermodynamic process of AD is composed of four 
steps, as shown in Fig. 3. The solvent water first evaporates from the 
evaporator at ambient temperature and the evaporated water vapor is 
then absorbed by the adsorbent at the constant evaporation pressure 
with an external cooling water circuit removing the sorption heat. Low- 
grade heat is put into the system for preheating meanwhile elevating the 
pressure to condensation pressure. Then the solvent is desorbed from the 
surface of the adsorbent in an isobaric desorption process driven by low- 
grade heat and condensed into pure water in the condenser, thereby 
producing high and low concentration solutions. Afterward, the 
adsorption bed is precooled for the next adsorption. The produced high 
and low concentration solutions are subsequently charged into the RED 
unit and the salinity gradient between them drives the ions transport 
through the membranes. In the RED stack, cation exchange membranes 
(CEMs) and anion exchange membranes (AEMs) are alternatively ar-
ranged, which regulate the movement direction of cations and anions, 
resulting in a net ionic current. Finally, the net ionic current is converted 
to electrical current via redox reactions on the electrodes. 

In this work, the thermodynamic process of AD is considered to be 
ideal and the results are all normalized (Zhao et al., 2020a). Therefore, 
the parameters of the heat engine are independent. An updated exper-
imental water adsorption isotherm database (EWAID 2.0) containing 
311 adsorbents was constructed based on the original version of EWAID 
1.0 including 231 adsorbents collected from NIST/ARPA-E Database. 
The detailed build process of EWAID 1.0 can be found in our previous 
work (Liu et al., 2021). In the updated EWAID 2.0, five MOFs from 
NIST/ARPA-E database and other adsorbents from the latest scientific 
literature were added. The data of 311 adsorbents including the source 
of literature and structural characteristics were provided in Table S1-S2. 
Here, 311 experimental water adsorption isotherms were fitted by the 
universal adsorption isotherm model (UAIM) applicable to various types 
of isotherms at different temperatures. The working capacity ΔW equals 
the difference of water uptake between adsorption and desorption ob-
tained from isotherms predicted by UAIM as described as (Ng et al., 
2017) 

Y. Zhao et al.                                                                                                                                                                                                                                    



Process Safety and Environmental Protection 168 (2022) 22–31

24

Fig. 1. Schematic diagram of the proposed computational screening approach for developing high performance adsorption-driven osmotic heat engine.  

Fig. 2. Schematic diagram of the adsorption-reversed electrodialysis heat engine.  
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where W is the water equilibrium uptake, P and T represent the equi-
librium pressure and temperature, and P0 is the saturation pressure of 
water, R is the universal gas constant. Additionally, αi, εi, mi and n are 
the fitting parameters determined by the characteristic of adsorption 
isotherms. Therefore, the working capacity of the adsorbent can be 
obtained by 

ΔW = Wmax − Wmin = W(Tads,Pev) − W(Tdes,Pcon) (2) 

The enthalpy of adsorption (ΔadsH) is calculated using the predicted 
adsorption isotherms at varying temperatures according to the Clausius- 
Clapeyron equation (Ramirez et al., 2005) 

ΔadsH = − R
∂(ln p)
∂(1/T)

(3) 

The average enthalpy of adsorption (ΔadsHave) is the average value of 
isosteric heat of adsorption between Wmin and Wmax, which can be 
estimated as 

ΔadsHave =

∫Wmax
Wmin

ΔadsH(W)dW
Wmax − Wmin

≈
ΔadsH(Wmax) + ΔadsH(Wmin)

2
(4) 

The total regenerative heat Qregconsists of two parts. Before the 
desorption process, heat Q1− 2 is required for isosteric heating to elevate 
the pressure to the saturation pressure at the condensing temperature, 
then heat Q2− 3 is required for isobaric heating during the desorption 
process (Supplemental Information). The specific energy consumption 
(SEC) indicating the heat required per kilogram of water vapor desorbed 
can be described as (Wu et al., 2012) 

SEC =
Qreg

msbΔW
(5) 

The Gibbs free energy of mixing is adopted to evaluate the theoret-
ical maximum work extracted in the RED process. The molar Gibbs free 
energy of mixing is defined as (Yip and Elimelech, 2012) 

− ΔGmix =RT
{[∑
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M
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∑
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B

}

(6)  

where x and γ denote the mole fraction and activity coefficient, 
respectively. The subscripts A, B and M indicate solution A, solution B, 
and mixture of the two solutions. Λis the molar fraction of each solution 
in the final mixture, thus ΛA + ΛB = 1. At low concentrations, the mole 
fraction and activity coefficient of water can be approximated to a value 
of 1, then it is assumed that the total volume is constant during mixing 
process due to the negligible effect of the mole and volume of salt 

compared to water. Hence the Gibbs free energy of mixing ΔGmix can be 
approximated as (Yip and Elimelech, 2012) 

−
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(7)  

where v is the total dissociated ions number and Ψ ≈ Vlow/(Vlow + Vhigh). 
The activity coefficient γ is given by the Pitzer correlations (Pitzer and 
Mayorga, 1973), which can can be found in Supplemental Information. 

To improve the energy efficiency of the osmotic heat engine, heat 
recovery is considered in this study and solid porous matrix regenerator 
is adopted for compensating the heat needed in desorption process (Long 
et al., 2021b). It is assumed that the temperature of the regenerator Tr is 
uniform and the heat capacity is huge. The heat recovery from the 
cooling water at outlet is calculated as Qr,c = mccp,c(Tdes − Tr) and the 
heat can be reused is calculated as Qr,h = mhcp,h(Tr − T1), where the 
subscripts c and h denote the cooling and heating process, respectively. 
Therefore, the net regeneration heat needed can be expressed 
asQreg,net = Qreg − Qr,h = Qreg − mhcp,h(Tr − T1) and it is indicated that 
larger Tr brings higher energy efficiency according to the equation. Due 
to Qr,c ≥ Qr,h in an actual process, temperature of the regenerator meets 
the relation of Tr ≤

Tdes+ωT1
1+ω , where ω =

mhcp,h
mccp,c 

denotes the asymmetric heat 

specific ratio. The maximum Tr =
Tdes+T1

2 is achieved when the cooling 
medium is the same as the heating medium during the heat recovery 
process, which indicates about 50% heat carried by cooling water is 
recovered. 

Hence the maximum theoretical energy efficiency considering heat 
recovery can be finally calculated as 

ηe =
ΔGmix

Qreg − mhcp,h(Tdes − T1)
/

2
(8)  

3. Results and discussion 

In order to to identify the high-performance work pairs which can 
lead to high efficiency for adsorption-reversed electrodialysis heat en-
gine, we constructed an experimental water adsorption isotherm data-
base including 311 kinds of adsorbents collected from NIST/ARPA-E 
Database of Novel and Emerging Adsorbent Materials ($author1$ et al., 
42] </id>) and the latest scientific literature. The adsorbents are clas-
sified into five species, including carbon, covalent-organic frameworks 
(COFs), metal-organic frameworks (MOFs), porous organic polymers 
(POPs) and zeolites. In addition, the structural properties of most ad-
sorbents in the database including accessible surface area (Sa), available 
pore volume (Va) and pore diameter (Dp) were also collected from the 
literature. The source literature of adsorbents and detailed structural 
characteristics can be found in Table S1-S2. The adsorption properties of 
each adsorbent under eight kinds of working salts (i.e. MgI2, MgBr2, 
LiCl, LiNO3, NaCl, KBr, NaNO3 and AgNO3) and the corresponding en-
ergy efficiency of the system were also computed. The evaporation and 
condensation temperatures are set to be the same as the ambient tem-
perature of 293 K and the desorption temperature is set at 333 K. The 
detailed operational conditions of the adsorption-driven osmotic heat 
engine are listed in Table S3. 

3.1. System performance of adsorbent-aqueous salt solution working pairs 

As shown in Figs. 4 and 5, the distribution of system electric effi-
ciency under different adsorbent species for divalent and univalent 
working aqueous salt solutions are presented. The horizontal lines 
correspond to the five species of adsorbents mentioned above and the 
vertical axis correspond to the efficiency of the adsorption-driven os-
motic heat engine. The distribution of system electric efficiency corre-
sponding to various adsorbents with different SEC is illustrated by 
boxplot graphs. The electric efficiency of most adsorbents for divalent 

Fig. 3. Isosteric diagram of the ideal adsorption-based desalination process, 
including four steps of isobaric adsorption, isosteric heating, isobaric desorp-
tion and isosteric cooling. 
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Fig. 4. Distribution of system electric efficiency colored by specific energy consumption under different adsorbent species for divalent salt solutions.  

Fig. 5. Distribution of system electric efficiency colored by specific energy consumption under different adsorbent species for univalent salt solutions.  

Table 1 
Top 10 identified combinations of salt and adsorbent with the highest electric efficiency.  

Ranking Adsorbents Species Metal type Salts ηe 
(%) 

ΔW 
(g/g) 

ΔH 
(MJ/kg) 

Sa 

(m2/g) 
Va 

(cm3/g) 
Dp 

(Å) 

1 S-MIL-53(Al) MOF Al MgI2  4.308  0.319  1.777 n.d. n.d. n.d. 
2 MIL-125 MOF Ti MgI2  4.201  0.263  1.799 1510 0.68 n.d. 
3 MIL-101-NH2 MOF Cr MgI2  4.004  0.905  2.006 2509 1.27 34c2 

4 S-MIL-53(Al) MOF Al MgBr2  3.650  0.358  1.762 n.d. n.d. n.d. 
5 {[Cu2(4pmpmd)2(CH3OH)4(opd)2] 

* 2 H2O} 
MOF Cu MgI2  3.577  0.121  1.971 n.d. n.d. 6.48c2 

6 MIL-125 MOF Ti MgBr2  3.513  0.268  1.799 1510 0.68 n.d. 
7 MIL-101-NH2 MOF Cr MgBr2  3.461  0.935  1.936 2509 1.27 34c2 

8 Cr-MIL(101) MOF Cr MgI2  3.169  0.623  2.537 3124 1.58 34c2 

9 Tp-Azo COF – MgI2  3.051  0.063  2.067 942 n.d. 27c1 

10 TpBpy COF – MgI2  3.0286  0.614  2.661 2336 n.d. 24.2c1 

n.d. represents "no data". 
For Sa: a Langmuir surface area; no superscript represents BET surface area. 
For Va: b1 pore volume measured basing on H2O adosrption; b2 pore volume measured using mercury intrusion method; no superscript default is based on N2 
adsorption. 
For Dp: c1 average pore diameter; c2 largest cavity diameter; c3 dominant pore size obtained according to pore size distribution. 

Y. Zhao et al.                                                                                                                                                                                                                                    



Process Safety and Environmental Protection 168 (2022) 22–31

27

salt varies between 1% and 3%, while for univalent salt, the electric 
efficiency is relatively small and varies between 0% and 1%, which can 
be attributed to the more number of ions of divalent salt than that of 
monovalent salt under a certain working concentration, resulting in 
larger Gibbs free energy. It can be found that the adsorbents corre-
sponding to the maximum efficiency are all MOFs, and COFs render the 
best average performance regardless of the type of working salts. The 
best performance adsorbents for various salts are COFs. For divalent salt, 
MOFs perform better than carbon, POPs and Zeolites, while for univa-
lent salt, POPs perform better than MOF, carbon and Zeolites. More than 
50% of COFs displayed an electric efficiency of over 2.5% with MgI2 as 
working salt, and around 75% of COFs exhibited an electric efficiency 
higher than 2%. It is also noticed that SEC has a strictly negative cor-
relation with the electric efficiency under all operational conditions. 

The top 10 combinations of working salt and adsorbent with the 
highest electric efficiency are listed in Table 1. Best-performing adsor-
bents with the highest efficiency for each working salt are also sum-
marized in Table S4. It was found that almost all adsorbents with the 
best performance are MOF and COF. Among all the combinations, 
adsorption-based osmotic heat engine with S-MIL-53(Al) as adsorbent 
and MgI2 as working salt can achieve the maximum electric efficiency of 
4.308%. The adsorbent S-MIL-53(Al) has wide applicability for the 
adsorption of various salts, and the efficiency achieved by its combi-
nation with almost all salts ranks the top five among all adsorbents. 

3.2. Relationship between adsorbent properties and system performance 

Working capacity and adsorption enthalpy are two important prop-
erties of the adsorbent. Working capacity indicated the mass of solvent 
absorbed by unit mass of adsorbent, which can be calculated as the 
difference between the maximum and minimum uptake of the adsor-
bents. In the adsorption process, a larger working capacity means a 
better separation of salt solution and thereby elevating the work 
extracted in power generation unit. According to equation (S10), 
adsorption enthalpy significantly correlated with the regeneration heat. 
The relationship between adsorbent properties and system energy effi-
ciency is depicted in Fig. 6, where 8 kinds of working salts are employed. 
There is an obvious positive correlation between working capacity and 
energy efficiency under a certain working solution. For divalent salts, 
the energy efficiency of the system increases significantly with the in-
crease of the working capacity when ΔW is less than 0.3 g/g, while there 
is no significant enhancement in efficiency when ΔW is larger, and for 
univalent salts, the specific ΔW is 0.2 g/g. In addition, neither higher nor 
lower adsorption enthalpy leads to best efficiency, adsorbents with 
moderate adsorption enthalpy (1.8–2.6 MJ/kg in this study) exhibit 
more favorable performance for each working aqueous salt solution. It 
can also be found that, in general, the osmotic coefficient of working salt 

is generally positively correlated with the energy efficiency of system. As 
shown in Fig. 7a, divalent salts possess much larger osmotic coefficients 
than univalent salts, resulting in higher energy efficiency as a whole. 
Among the 8 kinds of salts, MgI2 with the largest osmotic coefficient 
leads to the best system performance, while AgNO3 is opposite. 

3.3. Relationship between adsorbent structure characteristics and system 
performance 

The structural characteristics of the adsorbents in the database 
including accessible surface area (Sa), available pore volume (Va) and 
pore diameter (Dp) were collected from scientific literature to investi-
gate the relationship between adsorbent structure characteristics and 
system performance. Fig. 8(a-c) demonstrates that the adsorption 
behavior of the adsorbents is strongly correlated with the structure 
characteristics. There exsits an obvious positive relationship between 
adsorption capacity and Sa. The adsorption capacity increases with 
increasing Va, up to a maximum at around 1.5 cm3/g then decreases due 
to weakened interaction between water and adsorbents at a large Va. 
The working capacity also generally exhibits a trend of first increasing 
and then decreasing with the increase of diameter, reaching a peak value 
at the pore diameter of around 24 Å. This can be attributed to that 
continuous reversible adsorption occurs in pores with a Dp larger than 
water dynamic diameter of 2.7 Å and smaller than a certain critical 
diameter, while when Dp is larger than the critical diameter, undesirable 
thermodynamic irreversible capillary condensation will occur (de Lange 
et al., 2015). The critical diameter can be calculated asDc = 4σTc/(Tc −

T), where σ is the approximate water molecule size (0.28 nm), Tc and T 
are the critical and actual temperature of water, thus the critical diam-
eter under ambient temperature can be obtained as around 21 Å (Liu 
et al., 2021; Benoit et al., 2013). Given that the number of experimental 
water adsorption isotherms in the database collected from previous 
literature is limited, the data corresponding to the pore diameter of 
around 21 Å is insufficient, therefore, the theoretical maximum working 
capacity under the critical diameter is not observed. In summary, the 
structure-performance relationship showed that adsorbents with higher 
surface area (Sa > 1500 m2/g), medium available pore volume (Va 
~1.5 cm3/g) and pore diameter (Dp ~24 Å) showed higher working 
capacity and energy efficiency. The structural characteristics of top 
MOFs are consistent with the structure-performance relationship we 
obtained, and the preferred metal type of high-performing MOFs are Al, 
Cr Ti and Cu as seen in Table 1and Table S4. It is also noticed that salts 
with lower osmotic coefficient lead to larger working capacity when the 
structural characteristics of the adsorbent are constant. This can be 
attributed to that high osmotic coefficient results in low evaporation 
pressure, that is, adsorption pressure, as depicted in Fig. 7, thereby 
reducing the maximum uptake at the end of the adsorption process, and 
the minimum uptake at the end of the desorption process is related to the 
condensation pressure and independent of the working salt, as shown in  
Fig. 9. The relationship between system energy efficiency and adsorbent 
structure characteristics is presented in Fig. 8(d-f). For divalent salts, the 
energy efficiencies exhibit significant increase with the increase of the 
three structure characteristic parameters under smaller Sa, Va and Dp 
due to the elevated working capacity, then the working capacity 
exceeded 0.3 g/g, resulting in unobvious change in energy efficiency. In 
addition, the energy efficiency decreases due to the reduced working 
capacity when the pore diameter is larger than the critical diameter. For 
univalent salts, the effect of characteristic parameters on energy effi-
ciency is not as significant as that on divalent salt due to the relatively 
high working capacity of the adsorbents for univalent salts, which is 
mostly greater than the specific ΔWof 0.2 g/g. 

3.4. Machine learning and optimization 

Due to the high precision, flexibility and convenient scalability, 
machine learning has been widely used in many fields, such as fault 

Fig. 6. The system energy efficiency of various adsorbents as a function of 
working capacity colored by adsorption enthalpy. 
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diagnosis (Glowacz, 2021a, 2021b) and property prediction of energetic 
materials (Tian et al., 2022). In order to screen adsorbent-aqueous salt 
solution working pairs more efficiently, regression machine learning for 
finding the functional relationship to associate working pairs properties 
and system energy efficiency through training data collected in the 

database is conducted. The main properties of working pairs are acces-
sible surface area, available pore volume and pore diameter of the ad-
sorbents as well as osmotic coefficient and activity coefficient of the 
salts. Here, we tried out four different candidates of regression machine 
learning models for predicting energy efficiency as shown in Fig. 10, 

Fig. 7. Osmotic coefficient (a) and evaporation pressure (b) of 8 kinds of working aqueous salt solutions.  

Fig. 8. The relationship between system working capacity energy efficiency (a-c) as well as energy efficiency (d-f) and adsorbent structure characteristics, including 
accessible surface area (Sa), available pore volume (Va) and pore diameter (Dp). 

Fig. 9. The minimum uptake (a) and the maximum uptake (b) under different adsorbent and salt species.  
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whose hyper-parameters are automatically adjusted based on the 
Bayesian optimization. Indicators of root mean square error (RMSE), 
R-Squared (R2), mean absolute error (MAE), mean square error (MSE) 
are used to evaluate the accuracy of the models, and their values for each 
model are displayed in Table S5 (Supplemental Information). In addi-
tion, 776 kinds of working pairs with five property parameters are 
selected from the experimental water adsorption isotherm database, and 
eighty percent of the data is randomly chosen for training the model 
while the remaining data is used for validation. The training results 
indicate that the energy efficiency of the system can be predicted 
accurately with the five property parameters of working pairs and 
Gaussian process model exhibits the highest accuracy with R2 = 0.98, 
followed by the ensemble-based regression model with R2 = 0.96, the 
support vector machines model with R2 = 0.94 and the decision trees 
model with R2 = 0.87. 

Although machine learning is capable of making fast and relatively 
accurate prediction of the system energy efficiency based on the five job 
pair characteristics, it is still challenging for machine learning models to 
find the optimal solution in high-dimensional feature spaces (Jennings 
et al., 2019). Therefore, combined with the well-trained best performing 
Gaussian process model, the genetic algorithm is adopted to further 
search for the best-performing working pairs properties with the energy 
efficiency as the optimization objective. Fig. 11 shows the flowchart of 
the genetic algorithm optimization process and the initial population 
size is set at 5000. The optimal working pairs properties are the acces-
sible surface area of 694.32 m2/g, the available pore volume of 
0.31 cm3/g, the pore diameter of 9.22 Å, the osmotic coefficient of 5.04 
and the activity coefficient of 3.96. The final energy efficiency after 
optimization is 4.25%, which is higher than all the efficiency predicted 
in machine learning and slightly lower than the maximum efficiency in 
the experimental water adsorption isotherm database due to the fitting 
errors of the regression model. 

Fig. 10. Energy efficiency of the system predicted by 4 kinds of regression machine learning models.  

Fig. 11. The flowchart of the genetic algorithm optimization process.  
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4. Conclusions 

In this study, we perform high-throughput computational screening 
of adsorbent-aqueous salt solution working pairs for adsorption-driven 
osmotic heat engine. An experimental water adsorption isotherm data-
base including 311 kinds of adsorbents is constructed and eight common 
salts are selected to identify the high-performance adsorbent-aqueous 
salt solution work pairs. The relationships between properties of 
adsorbent-salt solution working pairs and performance of adsorption- 
driven osmotic heat engine is explored. Results show that MOFs 
exhibit the best performance for both divalent and univalent salts among 
the five species of adsorbents, and divalent salts render higher energy 
efficiency than univalent salts due to the larger Gibbs free energy of 
mixing. Specific energy consumption has a strictly negative correlation 
with electric efficiency. High working capacity and moderate adsorption 
enthalpy of adsorbents and large osmotic coefficients of salts are bene-
ficial to energy efficiency. Adsorbents with larger accessible surface 
area, moderate available pore volume and critical pore diameter lead to 
higher working capacity thus the energy efficiency, and these three 
structural parameters have a more significant effect on the energy effi-
ciency of divalent salts than univalent salts. In summery, high working 
capacity and moderate adsorption enthalpy of adsorbents and large 
osmotic coefficients of salts are beneficial to energy efficiency. Adsor-
bents with larger accessible surface area, moderate available pore vol-
ume and critical pore diameter are favorable. Regression machine 
learning for finding the functional relationship to associate working 
pairs properties (Sa, Va, Dp, Φ andγ) and system energy efficiency 
through training data collected in the database is conducted. Moreover, 
genetic algorithm is adopted combined with the Gaussian process model 
well-trained via machine learning to further search for the best- 
performing working pair properties with energy efficiency as the opti-
mization objective, and the final energy efficiency after optimization is 
4.25%. This work offers a method of screening adsorbent-aqueous salt 
solution working pairs and provides guidance for designing high- 
performance novel adsorbents for adsorption-driven osmotic heat en-
gines. In the next step, expanding the experimental water adsorption 
isotherms database is necessary for further exploration. In addition, the 
experimental validation of the screened adsorbents can also be con-
ducted in the further work. 
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